Wednesday, February 4, 2026
ISSN 2765-8767
  • Survey
  • Podcast
  • Write for Us
  • My Account
  • Log In
Daily Remedy
  • Home
  • Articles
  • Podcasts
    The Future of LLMs in Healthcare

    The Future of LLMs in Healthcare

    January 26, 2026
    The Future of Healthcare Consumerism

    The Future of Healthcare Consumerism

    January 22, 2026
    Your Body, Your Health Care: A Conversation with Dr. Jeffrey Singer

    Your Body, Your Health Care: A Conversation with Dr. Jeffrey Singer

    July 1, 2025

    The cost structure of hospitals nearly doubles

    July 1, 2025
    Navigating the Medical Licensing Maze

    The Fight Against Healthcare Fraud: Dr. Rafai’s Story

    April 8, 2025
    Navigating the Medical Licensing Maze

    Navigating the Medical Licensing Maze

    April 4, 2025
  • Surveys

    Surveys

    AI in Healthcare Decision-Making

    AI in Healthcare Decision-Making

    February 1, 2026
    Patient Survey: Understanding Healthcare Consumerism

    Patient Survey: Understanding Healthcare Consumerism

    January 18, 2026

    Survey Results

    Can you tell when your provider does not trust you?

    Can you tell when your provider does not trust you?

    January 18, 2026
    Do you believe national polls on health issues are accurate

    National health polls: trust in healthcare system accuracy?

    May 8, 2024
    Which health policy issues matter the most to Republican voters in the primaries?

    Which health policy issues matter the most to Republican voters in the primaries?

    May 14, 2024
    How strongly do you believe that you can tell when your provider does not trust you?

    How strongly do you believe that you can tell when your provider does not trust you?

    May 7, 2024
  • Courses
  • About Us
  • Contact us
  • Support Us
  • Official Learner
No Result
View All Result
  • Home
  • Articles
  • Podcasts
    The Future of LLMs in Healthcare

    The Future of LLMs in Healthcare

    January 26, 2026
    The Future of Healthcare Consumerism

    The Future of Healthcare Consumerism

    January 22, 2026
    Your Body, Your Health Care: A Conversation with Dr. Jeffrey Singer

    Your Body, Your Health Care: A Conversation with Dr. Jeffrey Singer

    July 1, 2025

    The cost structure of hospitals nearly doubles

    July 1, 2025
    Navigating the Medical Licensing Maze

    The Fight Against Healthcare Fraud: Dr. Rafai’s Story

    April 8, 2025
    Navigating the Medical Licensing Maze

    Navigating the Medical Licensing Maze

    April 4, 2025
  • Surveys

    Surveys

    AI in Healthcare Decision-Making

    AI in Healthcare Decision-Making

    February 1, 2026
    Patient Survey: Understanding Healthcare Consumerism

    Patient Survey: Understanding Healthcare Consumerism

    January 18, 2026

    Survey Results

    Can you tell when your provider does not trust you?

    Can you tell when your provider does not trust you?

    January 18, 2026
    Do you believe national polls on health issues are accurate

    National health polls: trust in healthcare system accuracy?

    May 8, 2024
    Which health policy issues matter the most to Republican voters in the primaries?

    Which health policy issues matter the most to Republican voters in the primaries?

    May 14, 2024
    How strongly do you believe that you can tell when your provider does not trust you?

    How strongly do you believe that you can tell when your provider does not trust you?

    May 7, 2024
  • Courses
  • About Us
  • Contact us
  • Support Us
  • Official Learner
No Result
View All Result
Daily Remedy
No Result
View All Result
Home Politics & Law

A New Approach to the Opioid Epidemic

Daily Remedy by Daily Remedy
August 8, 2021
in Politics & Law
0

In McHenry County, Illinois, like so many counties across the nation, families affected by the opioid epidemic have established community cohesion programs to support one another and economically provide for recovering addicts.

A pattern of behavior shown to improve relapse rates and a pattern we are starting to see appear more frequently as patients suffering from addictions are afforded medical treatments instead of reflexive criminal consequences.

In the heart of Appalachia, towns in West Virginia are opening guitar shops and other hobby-based businesses to give people an opportunity to recover from the ravages of addiction – mentally, economically, and existentially.

Such measures are proving to be more effective than traditional healthcare intervention.

Many states now employ programs that assign patients with addictions to mental health facilities instead of prisons for certain low level, misdemeanor crimes. With the belief that instead of castigating patients into a life of criminal recidivism, we can give patients an opportunity to seek medical treatment.

These are all programs intuitively assumed to add value in the community, and we will quantify the value of these programs through outcome-driven statistics, like the number of overdoses or criminal convictions for drug crimes.

But the true value of these programs resides in the behavioral changes that transpire, decision over decision, among the patients affected by, or would be affected by the opioid epidemic.

Many believe the relationship between prescription opioid use and heroin correlates to heroin overdose rates, and we simplified the correlation to relate the number of opioid prescriptions with heroin overdose rates – assuming the relationships to be linear. But studies have shown the number of opioid prescriptions has no meaningful relationship with overdose mortality rates. The perception that higher numbers of prescriptions lead to more overdoses is yet another heuristic we created through an outcome bias. This is what happens when we look at data based on outcome statistics and extrapolate a cause for those outcomes on just the data alone.

Something we can resolve by studying the complex relationships as they manifest dynamically over time, decision over decision. Patients do not transform into addicts in direct, predictable ways. Rather, the transformation observes complex patterns of behavior that are both rational and irrational.

These patterns characterize the behavior changes that lead patients to become addicts – or addicts to become patients. Whether it is the unemployment rate relative to the number of providers, or the number of Medicaid services available relative to household income levels, or even the varying usage rates of different opioid medications – prescription opioids, opioid addiction medications, and non-opioid alternatives – these are all variables that configure into the pattern variances we can model and observe over time.

Such a model can discern medical or social issues within a healthcare ecosystem which could be exacerbating overdoses and determine the need for treatment centers at specific locations. Or determine whether it would be more beneficial to include more comprehensive insurance coverage for opioid alternatives.

The patterns emphasize the most important, yet obscure aspect of healthcare behavior – the individual steps or decisions that lead to the broad tendencies we observe in traditional outcome statistics.

To observe these tendencies, we need to structure the right ratios, for which we need the right data – something far more difficult to obtain than it would seem. Healthcare information is scattered. At times almost guarded, privately in different corporate entities, and publicly across multiple federal and state institutions that all use different techniques to obtain, format, and store data. Which are often the most significant barrier in developing these frameworks. But a barrier we must traverse. Until we develop models to analyze complex relationships and the patterns that define them, we will continue to see only the most overt manifestations of these trends. And continue to make the same bias filled decisions.

Large settlement funds that came from multiple class action lawsuits against pharmaceutical firms were intended to help regions across the country recover from the damages caused by the opioid epidemic. Despite securing the funds, government officials remain at odds in terms of allocating the funds and resources. Lawyers, not trained in addiction health, simply aggregated outcome-focused statistics from various data repositories and presented the most grandiose numbers possible attempting to quantify the social and economic impact of a fundamentally complex process.

It should come as no surprise that now many of the government officials who worked together cannot decide who is better suited to manage the funds, nor how the funds should be disseminated. The necessary analysis was never conducted in the first place.

Instead, studying the clinical and economic needs of each town, county, or broader geographic region through complex frameworks would identify the unique characteristics of each ecosystem, as defined by the specific patterns of behavior. This would discern how the funds should be distributed and the level of government most fit to oversee the recovery efforts.

If there are wide disparities among smaller ecosystems, than local governments are likely better suited to appreciate the smaller nuances and differences. But if there are similar trends across multiple towns and counties, implying the ecosystem is rather large, than a more centralized effort from state or federal officials may be more effectively managed at a large scale. The characteristics of the healthcare ecosystem dictates the nature of the recovery efforts.

Healthcare is a fractal. Growing in complexity through the same patterns that appear over and over no matter how broad or individualized the scope. Always defined through the relationships. This explains the inherent limitations in data and technology. They attempt to separate the perceptions of healthcare from healthcare itself, creating an unnatural divide. Which inevitably gets filled with another set of perceptions.

To advance healthcare, we must be cognizant of how we think about healthcare, and become aware of the perceptions that form. But most of all, actively reframe our approach to healthcare through the perceptions themselves.

For knowledge without action is an empty science.

And healthcare has always been both an art and science.

ShareTweet
Daily Remedy

Daily Remedy

Dr. Jay K Joshi serves as the editor-in-chief of Daily Remedy. He is a serial entrepreneur and sought after thought-leader for matters related to healthcare innovation and medical jurisprudence. He has published articles on a variety of healthcare topics in both peer-reviewed journals and trade publications. His legal writings include amicus curiae briefs prepared for prominent federal healthcare cases.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Videos

In this episode, the host discusses the significance of large language models (LLMs) in healthcare, their applications, and the challenges they face. The conversation highlights the importance of simplicity in model design and the necessity of integrating patient feedback to enhance the effectiveness of LLMs in clinical settings.

Takeaways
LLMs are becoming integral in healthcare.
They can help determine costs and service options.
Hallucination in LLMs can lead to misinformation.
LLMs can produce inconsistent answers based on input.
Simplicity in LLMs is often more effective than complexity.
Patient behavior should guide LLM development.
Integrating patient feedback is crucial for accuracy.
Pre-training models with patient input enhances relevance.
Healthcare providers must understand LLM limitations.
The best LLMs will focus on patient-centered care.

Chapters

00:00 Introduction to LLMs in Healthcare
05:16 The Importance of Simplicity in LLMs
The Future of LLMs in HealthcareDaily Remedy
YouTube Video U1u-IYdpeEk
Subscribe

AI Regulation and Deployment Is Now a Core Healthcare Issue

Clinical Reads

Ambient Artificial Intelligence Clinical Documentation: Workflow Support with Emerging Governance Risk

Ambient Artificial Intelligence Clinical Documentation: Workflow Support with Emerging Governance Risk

by Daily Remedy
February 1, 2026
0

Health systems are increasingly deploying ambient artificial intelligence tools that listen to clinical encounters and automatically generate draft visit notes. These systems are intended to reduce documentation burden and allow clinicians to focus more directly on patient interaction. At the same time, they raise unresolved questions about patient consent, data handling, factual accuracy, and legal responsibility for machine‑generated records. Recent policy discussions and legal actions suggest that adoption is moving faster than formal oversight frameworks. The practical clinical question is...

Read more

Join Our Newsletter!

Twitter Updates

Tweets by TheDailyRemedy

Popular

  • Powerful Phrases to Tell Patients

    Powerful Phrases to Tell Patients

    0 shares
    Share 0 Tweet 0
  • How Insurers Taught Patients to Shop

    0 shares
    Share 0 Tweet 0
  • Interoperability Is No Longer a Technical Debate. It Is a Power Debate.

    0 shares
    Share 0 Tweet 0
  • Have We Cured Sickle Cell Disease?

    2 shares
    Share 0 Tweet 0
  • Louisiana Reclassifies Abortion Pills

    0 shares
    Share 0 Tweet 0
  • 628 Followers

Daily Remedy

Daily Remedy offers the best in healthcare information and healthcare editorial content. We take pride in consistently delivering only the highest quality of insight and analysis to ensure our audience is well-informed about current healthcare topics - beyond the traditional headlines.

Daily Remedy website services, content, and products are for informational purposes only. We do not provide medical advice, diagnosis, or treatment. All rights reserved.

Important Links

  • Support Us
  • About Us
  • Contact us
  • Privacy Policy
  • Terms and Conditions

Join Our Newsletter!

  • Survey
  • Podcast
  • About Us
  • Contact us

© 2026 Daily Remedy

No Result
View All Result
  • Home
  • Articles
  • Podcasts
  • Surveys
  • Courses
  • About Us
  • Contact us
  • Support Us
  • Official Learner

© 2026 Daily Remedy