Sunday, February 15, 2026
ISSN 2765-8767
  • Survey
  • Podcast
  • Write for Us
  • My Account
  • Log In
Daily Remedy
  • Home
  • Articles
  • Podcasts
    The Future of LLMs in Healthcare

    The Future of LLMs in Healthcare

    January 26, 2026
    The Future of Healthcare Consumerism

    The Future of Healthcare Consumerism

    January 22, 2026
    Your Body, Your Health Care: A Conversation with Dr. Jeffrey Singer

    Your Body, Your Health Care: A Conversation with Dr. Jeffrey Singer

    July 1, 2025

    The cost structure of hospitals nearly doubles

    July 1, 2025
    Navigating the Medical Licensing Maze

    The Fight Against Healthcare Fraud: Dr. Rafai’s Story

    April 8, 2025
    Navigating the Medical Licensing Maze

    Navigating the Medical Licensing Maze

    April 4, 2025
  • Surveys

    Surveys

    AI in Healthcare Decision-Making

    AI in Healthcare Decision-Making

    February 1, 2026
    Patient Survey: Understanding Healthcare Consumerism

    Patient Survey: Understanding Healthcare Consumerism

    January 18, 2026

    Survey Results

    Can you tell when your provider does not trust you?

    Can you tell when your provider does not trust you?

    January 18, 2026
    Do you believe national polls on health issues are accurate

    National health polls: trust in healthcare system accuracy?

    May 8, 2024
    Which health policy issues matter the most to Republican voters in the primaries?

    Which health policy issues matter the most to Republican voters in the primaries?

    May 14, 2024
    How strongly do you believe that you can tell when your provider does not trust you?

    How strongly do you believe that you can tell when your provider does not trust you?

    May 7, 2024
  • Courses
  • About Us
  • Contact us
  • Support Us
  • Official Learner
No Result
View All Result
  • Home
  • Articles
  • Podcasts
    The Future of LLMs in Healthcare

    The Future of LLMs in Healthcare

    January 26, 2026
    The Future of Healthcare Consumerism

    The Future of Healthcare Consumerism

    January 22, 2026
    Your Body, Your Health Care: A Conversation with Dr. Jeffrey Singer

    Your Body, Your Health Care: A Conversation with Dr. Jeffrey Singer

    July 1, 2025

    The cost structure of hospitals nearly doubles

    July 1, 2025
    Navigating the Medical Licensing Maze

    The Fight Against Healthcare Fraud: Dr. Rafai’s Story

    April 8, 2025
    Navigating the Medical Licensing Maze

    Navigating the Medical Licensing Maze

    April 4, 2025
  • Surveys

    Surveys

    AI in Healthcare Decision-Making

    AI in Healthcare Decision-Making

    February 1, 2026
    Patient Survey: Understanding Healthcare Consumerism

    Patient Survey: Understanding Healthcare Consumerism

    January 18, 2026

    Survey Results

    Can you tell when your provider does not trust you?

    Can you tell when your provider does not trust you?

    January 18, 2026
    Do you believe national polls on health issues are accurate

    National health polls: trust in healthcare system accuracy?

    May 8, 2024
    Which health policy issues matter the most to Republican voters in the primaries?

    Which health policy issues matter the most to Republican voters in the primaries?

    May 14, 2024
    How strongly do you believe that you can tell when your provider does not trust you?

    How strongly do you believe that you can tell when your provider does not trust you?

    May 7, 2024
  • Courses
  • About Us
  • Contact us
  • Support Us
  • Official Learner
No Result
View All Result
Daily Remedy
No Result
View All Result
Home Contrarian

Pandemic’s Ecological Fallacy

Daily Remedy by Daily Remedy
August 8, 2021
in Contrarian
0

Data become studies.

Studies draw conclusions.

Conclusions create interpretations.

And interpretations lead to clinical decisions.

A process most would have hardly noticed pre-pandemic. But over the past year, we have all become ad hoc epidemiologists extrapolating our own conclusions on the clinical studies that formed the foundation for healthcare policies the states used to enact social distancing guidelines and mask mandates.

The heightened scrutiny of the data and the attention placed on the data ushered in an unprecedented level of pressure to report data and publish studies.

The faster we needed data, the more we abbreviated the clinical studies. The more abbreviated the studies, the greater the error – a process that highlights a fundamental limitation in the clinical study design process. When the fluency or the rate of progress increases, the basic checks and balances in the studies deteriorate.

We get faster results, but the quality of the results is lower. When the quality of the results are lower, there is greater error in extrapolating conclusions from those studies. Something the journal, Nature, has been covering extensively.

They found that more than 4% of the articles listed in the Dimensions database and around 6% of those listed in the PubMed database were dedicated to COVID-19 in 2020. Dimensions and PubMed are the two most referenced databases for clinical studies across the world.

Perhaps more alarmingly, the pandemic also saw a sharp rise in preprints (articles posted online before peer review). According to Nature, more than 30,000 of the COVID-19 articles published in 2020 were preprints — somewhere between 17% and 30% of the total COVID-19 research papers. And more than half of the preprints appeared on one of three sites — medRxiv, SSRN and Research Square. These are distinctly different from the more commonly referenced sites that have greater oversight in the quality of the publications listed.

Unsurprisingly, this has led to an increase in the number of retractions of clinical studies as well. Typically, it would take three years to retract a paper, but during COVID-19, it has taken just months — another effect of the increased fluency on clinical study development.

The rapid appearance and disappearance has a destructive effect on public policy, the least of which is the damaged credibility. Public policy experts and elected officials make decisions based upon this data, and the quality of their decisions is based upon the quality of the data.

So when we pump out publications with questionable data, we get questionable decision-making.

The most cited COVID-19 study is a publication that studied 41 patients at a hospital in Wuhan, China. The most cited preprint was a study on social distancing measures, which had a major impact on public policy in Britain. The latter attracting the most attention on social media, according to internet monitoring firm, Altmetric.

While it is too early to generalize, we see a clear disparity in the quality of the articles focusing on public policy and the articles focusing on other aspects of COVID-19. Articles that focus on public policy, or issues that affect the public, tend to be published more quickly and present with lower quality of data.

Recently, multiple European countries have discontinued use of the Oxford/AstraZeneca vaccine due to the risk of blood clot among those receiving the vaccine. According to some reports, only five (5) in thirty (30) million developed blood clots. And earlier studies that evaluated the safety of this vaccine found no risk of blood clots.

“There is currently no indication that [Oxford/AstraZeneca] vaccination has caused these conditions, which are not listed as side effects with this vaccine,” a statement issued by European Medicines Agency (EMA) read. “The vaccine’s benefits continue to outweigh its risks and the vaccine can continue to be administered while investigation of cases of thromboembolic [blood clots] events is ongoing,” it added.

Yet countries nevertheless have stopped administering the vaccine, based upon the anecdotes of select individuals. Preventing millions of high risk individuals from receiving the vaccine throughout Europe just as the continent is immersed in another wave of COVID-19 infections.

When anecdotal evidence trumps statistically significant findings from regulated clinical studies, we find decisions are made more as impromptu reactions than as comprehensive evaluations of the data.

But when the quality of the data is already perceived to be suspect, even robustly designed studies lack credibility. Soon the all data points from all sources are given equal consideration, largely because most of the public, even many health policy experts, lack the nuanced understanding of clinical study design –how to evaluate the quality of the data from the study design, a critical skill academic physicians devote much of their career towards.

This becomes a problem when trying to decipher the results of different clinical studies. Even the clinical studies used to evaluate the many vaccines ranged widely across the world. Some studies used relatively few clinical subjects or had limited endpoints at which the studies drew their conclusions. Some only included subjects with mild symptoms while others included a wide range of clinical presentations. The variability in the study designs led to variable confidence in the studies – rightly or wrongly.

We saw how the Pfizer and Moderna vaccines had different results compared to the Johnson and Johnson vaccine. Much of that was due to the study design. And the Indian and Chinese vaccines had even greater variations in the study design as many of these studies used fewer subjects compared to the Western study counterparts.

What would have been helpful is a uniform approach to modifying study design that expedites the research for each vaccine in a more consistent manner. Adjust the studies, but adjust them similarly.

Rather than allow for variations in the fundamental study design, we should develop novel study designs that can be used in times of heightened fluency of publications.

The pandemic showed that there will be times when clinical studies need to expedite their process. Rather than implementing the same clinical study design models and modifying them in haphazard ways, we should implement adaptive techniques that increase the fluency of clinical study design while maintaining the quality of data needed to optimize the extrapolation of key interpretations from that data.

We must optimize the ecological fallacy of data – the extrapolation of data to individuals. Something we fell well short of during the pandemic, leading to moments of spectacular failure.

In the early days of the pandemic, we needed to understand whether masks were truly effective, and we needed to understand this over the course of weeks, not years. That added fluency led to a slew of half-baked clinical studies that were more or less glorified narratives about the value of masks, which used numbers as fillers to substantiate a preexisting belief about masks held by the authors of the studies.

As more such narrative-driven studies came about, the overall credibility of all studies – even well designed studies – fell in the eyes of the public. But more importantly, the public policy experts making the decisions failed to discern the differing quality of the data when citing studies to make public policy decisions – leading to decisions made more out of politics than science, and revisions that prompted reactions of disbelief and disillusionment.

Health should develop rapid clinical studies designs that can be completed in a matter of weeks instead of months. Yet retain the fidelity of the data needed to make medically appropriate decisions.

The very concept of clinical research, how we obtain new information or systematize existing information into clinical decision-making, should change post-pandemic, become more adaptable.

When the fluency of research increases, it should not come at the cost of the quality of data. There is a balance, and it is to be found in appropriately designed clinical studies that account for the heightened fluency of research.

Now that would make for a great clinical study.

ShareTweet
Daily Remedy

Daily Remedy

Dr. Jay K Joshi serves as the editor-in-chief of Daily Remedy. He is a serial entrepreneur and sought after thought-leader for matters related to healthcare innovation and medical jurisprudence. He has published articles on a variety of healthcare topics in both peer-reviewed journals and trade publications. His legal writings include amicus curiae briefs prepared for prominent federal healthcare cases.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Videos

In this episode, the host discusses the significance of large language models (LLMs) in healthcare, their applications, and the challenges they face. The conversation highlights the importance of simplicity in model design and the necessity of integrating patient feedback to enhance the effectiveness of LLMs in clinical settings.

Takeaways
LLMs are becoming integral in healthcare.
They can help determine costs and service options.
Hallucination in LLMs can lead to misinformation.
LLMs can produce inconsistent answers based on input.
Simplicity in LLMs is often more effective than complexity.
Patient behavior should guide LLM development.
Integrating patient feedback is crucial for accuracy.
Pre-training models with patient input enhances relevance.
Healthcare providers must understand LLM limitations.
The best LLMs will focus on patient-centered care.

Chapters

00:00 Introduction to LLMs in Healthcare
05:16 The Importance of Simplicity in LLMs
The Future of LLMs in HealthcareDaily Remedy
YouTube Video U1u-IYdpeEk
Subscribe

AI Regulation and Deployment Is Now a Core Healthcare Issue

Clinical Reads

Ambient Artificial Intelligence Clinical Documentation: Workflow Support with Emerging Governance Risk

Ambient Artificial Intelligence Clinical Documentation: Workflow Support with Emerging Governance Risk

by Daily Remedy
February 1, 2026
0

Health systems are increasingly deploying ambient artificial intelligence tools that listen to clinical encounters and automatically generate draft visit notes. These systems are intended to reduce documentation burden and allow clinicians to focus more directly on patient interaction. At the same time, they raise unresolved questions about patient consent, data handling, factual accuracy, and legal responsibility for machine‑generated records. Recent policy discussions and legal actions suggest that adoption is moving faster than formal oversight frameworks. The practical clinical question is...

Read more

Join Our Newsletter!

Twitter Updates

Tweets by TheDailyRemedy

Popular

  • The Information Epidemic: How Digital Health Misinformation Is Rewiring Clinical Risk

    The Information Epidemic: How Digital Health Misinformation Is Rewiring Clinical Risk

    0 shares
    Share 0 Tweet 0
  • Prevention Is Having a Moment and a Measurement Problem

    0 shares
    Share 0 Tweet 0
  • Child Health Is Now a Platform Issue

    0 shares
    Share 0 Tweet 0
  • Behavioral Health Is Now a Network Phenomenon

    0 shares
    Share 0 Tweet 0
  • The Breach Is the Diagnosis: Cybersecurity Has Become a Clinical Risk Variable

    0 shares
    Share 0 Tweet 0
  • 628 Followers

Daily Remedy

Daily Remedy offers the best in healthcare information and healthcare editorial content. We take pride in consistently delivering only the highest quality of insight and analysis to ensure our audience is well-informed about current healthcare topics - beyond the traditional headlines.

Daily Remedy website services, content, and products are for informational purposes only. We do not provide medical advice, diagnosis, or treatment. All rights reserved.

Important Links

  • Support Us
  • About Us
  • Contact us
  • Privacy Policy
  • Terms and Conditions

Join Our Newsletter!

  • Survey
  • Podcast
  • About Us
  • Contact us

© 2026 Daily Remedy

No Result
View All Result
  • Home
  • Articles
  • Podcasts
  • Surveys
  • Courses
  • About Us
  • Contact us
  • Support Us
  • Official Learner

© 2026 Daily Remedy